FMCE-PHQ-9 Assessment with Rasch Model in Detecting Concept Understanding, Cheating, and Depression amid the Covid-19 Pandemic

Fauzan Sulman, Sutopo Sutopo, Sentot Kusairi

Abstract


This research aims to see the ability of the FMCE-PHQ-9 test instrument amid the Covid-19 pandemic to measure conceptual understanding, cheating, and depression in students. The research was conducted on 64 physics education students at Sulthan Thaha Saifuddin State Islamic University Jambi. The instrument consists of 47 force and motion material items to fit the Winsteps 3.65.0 program. The analysis results using the Rasch Model showed that the MNSQ Outfit was 1.00 in the person column and 0.1 in the item column. Judging from the ZSTD value of 0.57 for the person and 0.1 for the item, the Points Measure value correlated with 0.4 to 0.85 while the item reliability value was 0.73 and the Cronbach's Alpha value was 0.56. therefore, the test instrument using the Rasch proclamation model found 31 fit items. The analysis results show that the concept ability was poor since, on average, the students could only answer questions with a low index of difficulty category. The research results on the level of cheating obtained data that 100 percent of students were not indicated to have the same pattern. Lastly, for the level of depression, only 16 percent of students did not experience depression, while 84 percent of students experienced it.

Keywords


Cheat detector; Concept understanding; Depression detection FMCE-PHQ-9 instrument; Rasch models

Full Text:

PDF

References


Andrich, D., & Pedler, P. (2019). A law of ordinal random error: The Rasch measurement model and random error distributions of ordinal assessments. Measurement: Journal of the International Measurement Confederation, 131, 771–781. https://doi.org/10.1016/j.measurement.2018.08.062

Chang, T. Y., Hong, G., Paganelli, C., Phantumvanit, P., Chang, W. J., Shieh, Y. S., & Hsu, M. L. (2020). Innovation of dental education during COVID-19 pandemic. Journal of Dental Sciences, 16(1), 15–20. https://doi.org/10.1016/j.jds.2020.07.011

Detel, W. (2015). Social constructivism. In International Encyclopedia of the Social & Behavioral Sciences: Second Edition (Second Edi, Vol. 22). Elsevier. https://doi.org/10.1016/B978-0-08-097086-8.63081-7

Fidan, M., & Tuncel, M. (2019). Integrating augmented reality into problem based learning: The effects on learning achievement and attitude in physics education. In Computers and Education (Vol. 142). Elsevier Ltd. https://doi.org/10.1016/j.compedu.2019.103635

Gordon, R. A., Peng, F., Curby, T. W., & Zinsser, K. M. (2021). An introduction to the many-facet Rasch model as a method to improve observational quality measures with an application to measuring the teaching of emotion skills. Early Childhood Research Quarterly, 55, 149–164. https://doi.org/10.1016/j.ecresq.2020.11.005

Ho, P. (2019). A new approach to measuring overall liking with the many-facet rasch model. Food Quality and Preference, 74, 100–111. https://doi.org/10.1016/j.foodqual.2019.01.015

Holbrook, A. I., & Kasales, C. (2020). Advancing competency-based medical education through assessment and feedback in breast imaging. Academic Radiology, 27(3), 442–446. https://doi.org/10.1016/j.acra.2019.04.017

Honey, M. A., Pearson, G., & Schweingruber, H. (2014). STEM integration in K-12 education: status, prospects, and an agenda for research. In STEM Integration in K-12 Education: Status, Prospects, and an Agenda for Research. https://doi.org/10.17226/18612

Kusairi, S. (2013). Analisis asesmen formatif fisika SMA berbantuan komputer. Jurnal Penelitian Dan Evaluasi Pendidikan, 16(3), 68–87. https://doi.org/10.21831/pep.v16i0.1106

Lavasani, M. G., Mirhosseini, S., & Hejazi, E. (2011). The effect of self-regulation learning strategies training on the academic motivation and self-efficacy. Procedia - Social and Behavioral Sciences, 29, 627–632. https://doi.org/10.1016/j.sbspro.2011.11.285

Levis, B., Benedetti, A., & Thombs, B. D. (2019). Accuracy of patient health questionnaire-9 (PHQ-9) for screening to detect major depression: Individual participant data meta-analysis. The BMJ, 365. https://doi.org/10.1136/bmj.l1476

Liaupsin, C. J. (2002). The comprehensive evaluation of a self-instructional program on functional behavioral assessment. Journal of Special Education Technology, 17(3), 5–25. https://doi.org/10.1177/016264340201700301

Lu, Z., Vincent, J. I., & MacDermid, J. C. (2021). Evaluation of the structural validity of the work instability scale using the rasch model. Archives of Rehabilitation Research and Clinical Translation, 3(1), 100103. https://doi.org/10.1016/j.arrct.2021.100103

Malone, K. L. (2008). Correlations among knowledge structures, force concept inventory, and problem-solving behaviors. Physical Review Special Topics - Physics Education Research, 4(2), 1–15. https://doi.org/10.1103/PhysRevSTPER.4.020107

Mamat, M. N., Maidin, P., & Mokhtar, F. (2014). Simplified reliable procedure for producing accurate student’s ability grade using rasch model. Procedia - Social and Behavioral Sciences, 112(Iceepsy 2013), 1077–1082. https://doi.org/10.1016/j.sbspro.2014.01.1272

Manda Negara, I., & Hidayati, N. (2021). The Development of assessment instrument to assess implementation of work-based learning, and learning innovation skills. Jurnal Iqra’: Kajian Ilmu Pendidikan, 6(1), 1–13.

Mishra, L., Gupta, T., & Shree, A. (2020). Online teaching-learning in higher education during lockdown period of COVID-19 pandemic. International Journal of Educational Research Open, In press, 100012. https://doi.org/10.1016/j.ijedro.2020.100012

Mozaffari, H., Siassi, F., Guilani, B., Askari, M., & Azadbakht, L. (2020). Association of dietary acid-base load and psychological disorders among Iranian women: A cross-sectional study. Complementary Therapies in Medicine, 53, 102503. https://doi.org/10.1016/j.ctim.2020.102503

Ozkazanc, S., & Yuksel, U. D. (2015). Evaluation of disaster awareness and sensitivity level of higher education students. Procedia - Social and Behavioral Sciences, 197, 745–753. https://doi.org/10.1016/j.sbspro.2015.07.168

Patrick, S., & Connick, P. (2019). Psychometric properties of the PHQ-9 depression scale in people with multiple sclerosis: a systematic review. PLoS ONE, 14(2), 1–12. https://doi.org/10.1101/321653

Platto, S., Wang, Y., Zhou, J., & Carafoli, E. (2020). History of the COVID-19 pandemic: Origin, explosion, worldwide spreading. Biochemical and Biophysical Research Communications, 538, 14–23. https://doi.org/10.1016/j.bbrc.2020.10.087

Ponkilainen, V. T., Miettinen, M., Sandelin, H., Lindahl, J., Häkkinen, A. H., Toom, A., Tillgren, T., Ilves, O., Latvala, A. O., Ahonen, K., Sirola, T., Sampo, M., Väistö, O., & Repo, J. P. (2021). Structural validity of the finnish manchester-oxford foot questionnaire (MOXFQ) using the rasch model. Foot and Ankle Surgery, 27(1), 93–100. https://doi.org/10.1016/j.fas.2020.02.012

Putra, M. I. J., Junaid, M., & Sulman, F. (2021). The ability of the question and answer (Q&A) method with the help of learning videos against student learning outcomes amid the Covid-19 pandemic. EDUKATIF: Jurnal Ilmu Pendidikan, 3(5), 2160–2169. https://doi.org/https://doi.org/10.31004/edukatif.v3i5.768

Rabbitt, M. P. (2018). Causal inference with latent variables from the Rasch model as outcomes. Measurement: Journal of the International Measurement Confederation, 120, 193–205. https://doi.org/10.1016/j.measurement.2018.01.044

Ramlo, S. (2008). Validity and reliability of the force and motion conceptual evaluation. American Journal of Physics, 76(9), 882–886. https://doi.org/10.1119/1.2952440

Reed, D. K., Martin, E., Hazeltine, E., & McMurray, B. (2020). Students’ perceptions of a gamified reading assessment. Journal of Special Education Technology, 35(4), 191–203. https://doi.org/10.1177/0162643419856272

Ryckman, T. (2015). Why history matters to philosophy of physics. Studies in History and Philosophy of Science Part A, 50(1), 4–12. https://doi.org/10.1016/j.shpsa.2014.09.010

San Martín, E., & Rolin, J. M. (2013). Identification of parametric Rasch-type models. Journal of Statistical Planning and Inference, 143(1), 116–130. https://doi.org/10.1016/j.jspi.2012.06.014

Scott, T. F., & Schumayer, D. (2017). Conceptual coherence of non-Newtonian worldviews in Force Concept Inventory data. Physical Review Physics Education Research, 13(1), 1–12. https://doi.org/10.1103/PhysRevPhysEducRes.13.010126

Scoulas, J. M., Aksu Dunya, B., & De Groote, S. L. (2021). Validating students’ library experience survey using rasch model. Library and Information Science Research, 43(1), 101071. https://doi.org/10.1016/j.lisr.2021.101071

Shute, V. J., & Rahimi, S. (2021). Stealth assessment of creativity in a physics video game. Computers in Human Behavior, 116, 106647. https://doi.org/10.1016/j.chb.2020.106647

Smith, T. I., & Wittmann, M. C. (2008). Applying a resources framework to analysis of the force and motion conceptual evaluation. Physical Review Special Topics-Physics Education Research, 4(2), 1–12. https://doi.org/10.1103/PhysRevSTPER.4.020101

Sofiuddin, M. B., Kusairi, S., & Sutopo, S. (2018). Analisis penguasaan konsep siswa SMA pada materi fluida statis. Jurnal Pendidikan - Teori, Penelitian, Dan Pengembangan, 3(7), 955–961.

Sremcev, N., Lazarevic, M., Krainovic, B., Mandic, J., & Medojevic, M. (2018). Improving teaching and learning process by applying Lean thinking. Procedia Manufacturing, 17, 595–602. https://doi.org/10.1016/j.promfg.2018.10.101

Sri Hastuti, I. M. (2021). Model asesmen alternatif dalam evaluasi pembelajaran di era pandemi Covid-19. Tadarus Tarbawy, 3(1), 280–290.

Sudaryanto, S., Widayati, W., & Amalia, R. (2020). Konsep merdeka belajar-kampus merdeka dan aplikasinya dalam pendidikan bahasa (dan sastra) Indonesia. Kode: Jurnal Bahasa, 9(2), 78–93. https://doi.org/10.24114/kjb.v9i2.18379

Sulman, F. (2019). Application of cooperative problem posing and prior motivation towards students learning outcomes. Indonesian Journal of Educational Research (IJER), 4(2), 93–96. https://doi.org/10.30631/ijer.v4i2.126

Sulman, F., Habibi, M., & Zb, A. (2021). Pengaruh media animasi berkarakter islami terhadap hasil belajar pengetahuan bumi dan antariksa. Edumaspul: Jurnal Pendidikan, 5(1), 135–146. https://doi.org/10.33487/edumaspul.v5i1.1044

Sulman, F., Taqwa, M. R. A., Aminah Zb, A. Z., Rafzan, R., & Fikri, A. (2020). The effect of mathematical connections on the mastery of Pprobability material. Edumatika : Jurnal Riset Pendidikan Matematika, 3(2), 147. https://doi.org/10.32939/ejrpm.v3i2.645

Tatus, S., Rospects, P., Genda, A. N. A., & Esearch, F. O. R. R. (2014). STEM integration in K-12 education: Status, prospects, and an agenda for research. National Academies Press.

Thees, M., Kapp, S., Strzys, M. P., Beil, F., Lukowicz, P., & Kuhn, J. (2020). Effects of augmented reality on learning and cognitive load in university physics laboratory courses. Computers in Human Behavior, 108, 106316. https://doi.org/10.1016/j.chb.2020.106316

Thornton, R. K., & Sokoloff, D. R. (1998). Assessing student learning of Newton’s laws: The force and motion conceptual evaluation and the evaluation of active learning laboratory and lecture curricula. American Journal of Physics, 66(4), 338–352. https://doi.org/10.1119/1.18863

Tristiantari, N. K. D. (2019). Pengembangan bahan ajar tematik bermuatan folklor bali. Journal of Education Technology, 2(3), 128. https://doi.org/10.23887/jet.v2i3.16381

Wang, M., Zhao, Q., Hu, C., Wang, Y., Cao, J., Huang, S., Li, J., Huang, Y., Liang, Q., Guo, Z., Wang, L., Ma, L., Zhang, S., Wang, H., Zhu, C., Luo, W., Guo, C., Chen, C., Chen, Y., … Yang, Y. (2021). Prevalence of psychological disorders in the COVID-19 epidemic in China: A real world cross-sectional study. Journal of Affective Disorders, 281, 312–320. https://doi.org/10.1016/j.jad.2020.11.118

Watts, E. H., O’Brian, M., & Wojcik, B. W. (2003). Four models of assistive technology consideration: how do they compare to recommended educational assessment practices? Journal of Special Education Technology, 19(1), 43–56. https://doi.org/10.1177/016264340401900104

Wells, J., Henderson, R., Traxler, A., Miller, P., & Stewart, J. (2020). Exploring the structure of misconceptions in the force and motion conceptual evaluation with modified module analysis. Physical Review Physics Education Research, 16(1). https://doi.org/10.1103/PHYSREVPHYSEDUCRES.16.010121

Wijayanti, E., & Mundilarto, M. (2015). Pengembangan instrumen asesmen diri dan teman sejawat kompetensi bidang studi pada mahasiswa. Jurnal Penelitian Dan Evaluasi Pendidikan, 19(2), 129–144. https://doi.org/10.21831/pep.v19i2.5572

Xiao, Y., & Yang, M. (2019). Formative assessment and self-regulated learning: How formative assessment supports students’ self-regulation in English language learning. System, 81, 39–49. https://doi.org/10.1016/j.system.2019.01.004

Zb, A., Setiawan, M. E., & Sulman, F. (2020). Pengaruh e-learning berbasis schoology berbantuan whatsApp group terhadap hasil belajar ditengah pandemi covid-19. Al-Khidmah, 1(1), 55–60. https://doi.org/10.29406/al-khidmah.v3i2.2282

Zehirlioglu, L., & Mert, H. (2020). Validity and reliability of the heart disease fact questionnaire (HDFQ): A Rasch measurement model approach. Primary Care Diabetes, 14(2), 154–160. https://doi.org/10.1016/j.pcd.2019.06.006




DOI: http://dx.doi.org/10.24042/tadris.v6i2.9273

Refbacks

  • There are currently no refbacks.




Creative Commons License

Tadris: Jurnal Keguruan dan Ilmu Tarbiyah is licensed under a Creative Commons Attribution-ShareAlike 4.0 International Licensep-ISSN 2301-7562e-ISSN 2579-7964