TOURIST ATTRACTIONS RECOMMENDER SYSTEM USING COLLABORATIVE FILTERING METHODS AND K-NEAREST NEIGHBORS

Raditya Muhammad, Fauzan Sukmapratama, Nur Azizah Khoirunnisa

Abstract


The many tourist attractions and their various types certainly benefit tourists. Bandung is a famous tourist center and is visited by many domestic and foreign tourists. However, the large number of tourist attractions in Bandung often makes it difficult for tourists to determine their destination, especially if they only have limited time. This research aims to design a tourist attraction recommendation system based on collaborative filtering and K-Nearest Neighbors which can help users by providing recommendations for suitable tourist attractions by displaying seven tourist attraction recommendations. By using collaborative filtering, the system will recommend the best tourist attractions based on ratings and reviews given by users on the internet. Based on the RMSE test results, the train and test data values are in the range of 0.2 - 0.5, which shows that the accuracy of the model is good.

Full Text:

PDF

References


F. Ricci, L. Rokach, B. Shapira, P. B. Kantor, and F. Ricci, Recommender Systems Handbook. 2011. doi: 10.1007/978-0-387-85820-3.

Z. Fayyaz, M. Ebrahimian, D. Nawara, A. Ibrahim, and R. Kashef, “Recommendation systems: Algorithms, challenges, metrics, and business opportunities,” Appl. Sci., vol. 10, no. 21, pp. 1–20, 2020, doi: 10.3390/app10217748.

T. N. Trang Tran, M. Atas, A. Felfernig, and M. Stettinger, “An overview of recommender systems in the healthy food domain,” J. Intell. Inf. Syst., vol. 50, no. 3, pp. 501–526, 2018, doi: 10.1007/s10844-017-0469-0.

J. Y. Park and S. C. S. Jang, “Confused by too many choices? Choice overload in tourism,” Tour. Manag., vol. 35, pp. 1–12, 2013, doi: 10.1016/j.tourman.2012.05.004.

N. T. Thai and U. Yuksel, “Too many destinations to visit: Tourists’ dilemma?,” Ann. Tour. Res., vol. 62, pp. 38–53, 2017, doi: 10.1016/j.annals.2016.11.004.

E. Satria, N. Atina, M. E. Simbolon, and A. P. Windarto, “Spk: Algoritma Multi-Attribute Utility Theory (Maut) Pada Destinasi Tujuan Wisata Lokal Di Kota Sidamanik,” Comput. Eng. Sci. Syst. J., vol. 3, no. 2, p. 168, 2018, doi: 10.24114/cess.v3i2.9954.

X. Li, X. Liang, T. Yu, S. Ruan, and R. Fan, “Research on the Integration of Cultural Tourism Industry Driven by Digital Economy in the Context of COVID-19—Based on the Data of 31 Chinese Provinces,” Front. Public Heal., vol. 10, no. March, pp. 1–10, 2022, doi: 10.3389/fpubh.2022.780476.

I. Heliany, “Wonderful Digital Tourism Indonesia Dan Peran Revolusi Industri Dalam Menghadapi Era Ekonomi Digital 5.0,” Destin. J. Hosp. dan Pariwisata, vol. 1, no. 1, pp. 21–35, 2019, doi: 10.31334/jd.v1i1.551.

Kemenparekraf, “Strategi Industri Akomodasi Wisata saat Pandemi,” kemenparekraf.go.id. Accessed: Aug. 31, 2023. [Online]. Available: https://www.kemenparekraf.go.id/ragam-pariwisata/Strategi-Industri-Akomodasi-Wisata-saat-Pandemi

D. Ramadaniah et al., “Development of Decision Support System Application for Admission of New Students and Determination of Major Using Simple Additive Weighting (Saw),” Asia Inf. Syst. J., vol. 1, no. 2, pp. 70–79, 2022, [Online]. Available: http://ejournal.radenintan.ac.id/index.php/AISJ/article/view/15766

S. Poudel and M. Bikdash, “E Xplaining the P Erformance of C Ollaborative F Iltering M Ethods With,” vol. 12, no. 2, pp. 287–295, 2023.

A. R. Fitrianti, A. Rohmani, and W. Widjanarto, “Sistem Rekomendasi Film Berbasis Website Dengan Metode Prototype Menggunakan Algoritma K-Nearest Neighbors (KNN),” JOINS (Journal Inf. Syst., vol. 5, no. 2, pp. 278–287, 2020, doi: 10.33633/joins.v5i2.4168.

I. G. Gusti, M. Nasrun Hasibuan, and R. Astuti Nugrahaeni, “Rekomendasi Sistem Pemilihan Mobil Menggunakan K-Nearest Neighbor (Knn) Collaborative Filtering,” TEKTRIKA - J. Penelit. dan Pengemb. Telekomun. Kendali, Komputer, Elektr. dan Elektron., vol. 4, no. 1, p. 26, 2019, doi: 10.25124/tektrika.v4i1.1846.

E. Erlangga and H. Sutrisno, “Jurnal Manajemen Sistem Informasi dan Teknologi Sistem Rekomendasi Beauty Shop Berbasis Collaborative Filtering,” Expert J. Manaj. Sist. Inf. dan Teknol., vol. 10, no. 2, pp. 2745–7265, 2020.

E. Riswanto, B. Robi’In, and Suparyanto, “Mobile Recommendation System for Culinary Tourism Destination using KNN (K-nearest neighbor),” J. Phys. Conf. Ser., vol. 1201, no. 1, 2019, doi: 10.1088/1742-6596/1201/1/012039.

A. M. Pravina, “Sentiment Analysis of Delivery Service Opinions on Twitter Documents using K-Nearest Neighbor,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 2, pp. 996–1012, 2022, doi: 10.35957/jatisi.v9i2.1899.

A. Prabowo, “Indonesia Tourism Destination,” kaggle.com. Accessed: Aug. 31, 2023. [Online]. Available: https://www.kaggle.com/datasets/aprabowo/indonesia-tourism-destination

R. I. PUTRA, “Sistem Rekomendasi Destinasi Wisata Kota Bandung,” kaggle.com. Accessed: Nov. 07, 2023. [Online]. Available: https://www.kaggle.com/code/rafkaip/sistem-rekomendasi-destinasi-wisata-kota-bandung

M. A. Azka, P. A. Sugianto, A. K. Silitonga, and I. R. Nugraheni, “Uji Akurasi Produk Estimasi Curah Hujan Satelit Gpm Imerg Di Surabaya, Indonesia,” J. Sains Teknol. Modif. Cuaca, vol. 19, no. 2, p. 83, 2018, doi: 10.29122/jstmc.v19i2.3153.

C. H. Yeung, “Do recommender systems benefit users? a modeling approach,” J. Stat. Mech. Theory Exp., vol. 2016, no. 4, p. 43401, 2016, doi: 10.1088/1742-5468/2016/04/043401.




DOI: http://dx.doi.org/10.24042/aisj.v2i2.18529

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Raditya Muhammad

License URL: https://creativecommons.org/licenses/by-sa/4.0

Office and Secretariat:

The Office of AISJ, Faculty of Science and Technology's Building (2nd Floor)

Universitas Islam Negeri Raden Intan Lampung, Indonesia. Endro Suratmin Street, No.1 Sukarame Bandar Lampung. Postal Code: 35131
Email: [email protected]
e-Journal: http://ejournal.radenintan.ac.id/index.php/AISJ/index


Asia Information System Journal is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Published By Universitas Islam Negeri Raden Intan Lampung. e-ISSN 2963-8593

 

Journal Indexing:

ISSN | Google Scholar | Garuda | ROAD | PKP Index | BASE | ESJI | General Impact Factor | Moraref | One Search | Cite Factor | Crossref | WorldCat | Neliti  | SINTA | Dimensions | ICI Index Copernicus

 

 

Contact Admin :